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ABSTRACT
The availability of data sources has greatly increased due to
advances in technology and data sharing. With these new data
sources and significantly larger volume of data, engineers have
been presented with a unique opportunity to create more realistic
and informative models that can be used in real world
applications. This paper presents a probabilistic framework for
using big data to assess and predict the well-being of individuals
before and in the aftermath of a hazard. Data are used to inform
a Capability Approach (CA) where capabilities are defined as
important dimensions of well-being reflecting what individuals
have a genuine opportunity to do or become. The paper also
addresses three of the grand challenges presented by big data:
privacy, source validity, and accuracy. As an example, the
probabilistic framework is used to study the ability of households
in a coastal community to be sheltered in the aftermath of a
hypothetical earthquake.
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1. Introduction

Communities can experience devastating impacts from natural hazards. In addition, often
these impacts are not evenly distributed over the hazard area due to spatial variability in
the intensity measures of the hazard, as well as spatial differences in the vulnerabilities of
the physical systems and of individuals from different social groups. Therefore, predictive
models should be able to capture not only the average impact on a region, but also the
spatial variability in the impact (Gardoni and Murphy 2018). To model the spatial variability
in the intensity measures, we can use different models including sophisticated 3-dimen-
sional physics-based hazard models that capture the variability in seismic intensity
measures (Guidotti, Tian, and Gardoni 2019). The spatial variability in the physical
systems comes from the variability in the vulnerabilities of the components of the physical
systems, which could be also affected by differential aging and deterioration (Jia and
Gardoni 2018a, 2018b; Jia, Tabandeh, and Gardoni 2017; Kumar and Gardoni 2011,
2013, 2014; Kumar, Gardoni, and Sanchez-Silva 2009, 2015). We can use fragility and
repair-rate curves to model the time-dependent vulnerability of each component of the
physical systems (Gardoni, Der Kiureghian, and Mosalam 2002; Gardoni, Mosalam, and
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Der Kiureghian 2003; Iannacone and Gardoni 2018). The accuracy of these fragilities and
repair rate curves depend on detailed, real time inventories of infrastructure which can
be difficult to obtain. Extensive work has been done to create detailed inventories (Cleve-
land, Elnashai, and Pineda 2007), however, these inventories are often static and have to
be manually updated. For the social environment, it is difficult to capture the spatial varia-
bility due to issues with data availability. To accurately model individuals’ vulnerabilities,
information on socio-economic characteristics of the individuals is needed. However,
such information is traditionally not available at the household level but at a higher
level of aggregation.

Current models are often reliant on assumptions or simplifications that are necessary
because of limitations in available data. Over the past few years, the availability of data
sources has greatly increased due to advances in technology and data sharing (Wang
and Ye 2018). With these new data sources and significantly larger volume of data, engin-
eers have been presented with a unique opportunity to create more realistic and informa-
tive models that can be used in real world applications. This is exemplified by the growth
of data science companies and research institutes who collect large data and study rel-
evant applications. For example, the European research institute, SoBigData, is used by
companies, policy makers, and researchers alike to develop novel research related to
big data analytics (Grossi et al. 2018). Moreover, the United States government started
Data.gov in 2009 which is a website containing datasets related to multiple applications
including healthcare, education, and transportation (Kim, Trimi, and Chung 2014).

This paper presents a probabilistic framework for using big data and big data analytics
to assess and predict the well-being of individuals in the aftermath of natural disasters. The
term ‘big data’ usually refers to a large volume of data that is often hard to store, difficult to
visualise, and is highly variable in format and type. Although storage is not often a signifi-
cant problem in civil engineering applications, difficulties in visualisation and variability
present significant challenges. Big data analytics is the process of examining large and
varied data sets. Big data analytics is especially salient in disaster mitigation, and risk
and resilience analysis where insufficient or missing data has traditionally forced research-
ers to develop simple models often applied to overly simplistic examples. In addition,
decision makers need to predict or assess on an ongoing basis the well-being of
affected individuals in the aftermath of a natural disaster to decide where to allocate
resources for mitigation or recovery. The presented framework proposes to use data to
inform a Capability Approach (CA) where capabilities are defined as important dimensions
of well-being reflecting what individuals have a genuine opportunity to do or become. The
CA uses indicators to quantify the capabilities.

The paper starts with a review of the CA for risk assessment (including the development
of probabilistic predictive models) and risk evaluation. Then, the paper provides a litera-
ture review of big data usage in the context of hazard management and discusses the
usage of big data analytics within a CA along with the challenges of privacy, accuracy,
and validity. Finally, the paper illustrates the framework considering the opportunity of
households to have a shelter in the aftermath of a hypothetical earthquake.
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2. Capability approach for risk assessment

Risk analysis (or assessment) involves estimating the consequences and associated prob-
abilities of a hazardous scenario. The societal consequences can be conceptualised and
quantified using a CA. First developed by Amartya Sen (1989, 1992, 1993, 1999a, 1999b)
and Martha Nussbaum (2000a, 2000b, 2001) in the context of development economics
and policy, the CA offers a conception of some of the constitutive components of individ-
ual well-being. According to the CA, the well-being of individuals should be measured and
evaluated based on the opportunities people have to live valuable lives (Robeyns 2006).
This differs from a utilitarian approach where emphasis is put on individual preferences.
There are two key definitions in a CA: functionings and capabilities. Functionings refer to
what an individual does or becomes in his or her life that is of value, such as being edu-
cated. In the CA, functionings are dimensions of well-being. Capabilities refer to the func-
tionings that are feasible for an individual to choose to achieve given what he/she has and
what he/she can do with that given, for example, the built infrastructure, legal norms, and
economic institutions (Sen 1993). Whether education is feasible for an individual can
depend on whether an individual has income to pay for books or fees, whether a
school is located nearby, and whether social norms equally encourage the education of
girls and boys.

Murphy and Gardoni (2006, 2007, 2008, 2010, 2011, 2012a, 2012b) and Gardoni and
Murphy (2008, 2009, 2010, 2013, 2014) proposed a CA to quantify the societal impact of
hazards on individual well-being. This impact is defined as the effect the hazard has on
the functionings that individuals have an opportunity to achieve (i.e. capabilities.) For
example, the impact of an earthquake can be measured in terms of the changes in oppor-
tunities individuals have, such as the opportunity to be sheltered or the opportunity to be
educated (Boakye et al. 2019). Although the capability approach is traditionally limited to a
discussion on individuals, the importance of group dynamics on the well-being of individ-
uals is recognised. Sen (1999b) acknowledges that groups may be instrumentally impor-
tant for enhancing individual capabilities and Stewart (2005) argues that the capability
approach should be extended to explicitly account for group dynamics by considering
group capabilities as well as individual ones. Within our framework, this can easily be
done by adding an additional group capability or a capability which can measure an indi-
viduals’ relationship to a prominent community group. The steps needed to implement a
CA for risk assessment are: (1) selection of capabilities, (2) selection of indicators, (3) devel-
opment of probabilistic predictive models, and (4) development of an aggregate measure.
This section discusses these steps in detail.

Gardoni and Murphy (2009, 2010) proposed three criteria for selecting capabilities in
the context of hazard risk analysis. First, capabilities should be potentially affected by
the hazard. This affected capability is identified by either a theoretical justification or
empirical evidence. Second, capabilities should be parsimonious to limit issues with
data collection (or storage). Third, capabilities should be orthogonal meaning that each
capability should provide information that cannot be ascertained from another capability.
This avoids giving disproportionate weight to one capability over another because of their
orthogonality. Capabilities can be assumed to be incommensurable and to be all necessary
to the well-being of an individual (Gardoni and Murphy 2009, 2010; Sen 1993).
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Since capabilities cannot be directly measured, indicators are chosen as proxies
(Raworth and Stewart 2003). Indicators can be real-valued or categorical. Real-valued indi-
cators take numerical values whereas categorical indicators take qualitative values. Indi-
cators need to be estimated before and after a natural hazard. These indicators can
serve as quantification metrics for the different capabilities that can be measured
through the disaster impact and recovery (Boakye, Murphy, and Gardoni 2018). Table 1
gives some examples of capabilities and possible corresponding indicators. In practice,
indicators have to be chosen based on data availability in the region of interest as detailed
in Boakye, Murphy, and Gardoni 2018.

Predictive models are then needed for the indicators to estimate the values of the indi-
cators as a function of influencing factors (regressors.) These regressors can describe, for
example, the state of the functionality of structures and infrastructure and/or various
socio-economic factors identified from qualitative studies on social vulnerability. Taban-
deh et al. (2019) proposed time-varying probabilistic predictive models for several
indicators.

To define the overall state of well-being, the indicators need to be combined to create
an aggregate measure of achievement. Because the capabilities are incommensurable, the
well-being of each individual can be seen as a series system where each capability (and the
corresponding indicator) is a component of the system (Tabandeh, Gardoni, and Murphy
2017). Following a system reliability approach (Gardoni 2017), the system fails if any com-
ponent fails to reach a desired level as shown in Figure 1. Green, orange, and red represent
acceptable, tolerable, and unacceptable levels respectively. The small arrows yellow and
red arrows in the figure denote acceptability and tolerability limits. The definition of the
desired levels (or limits) is discussed further in the next section.

3. Capability approach for risk evaluation

After the risk has been assessed, we can use a CA to evaluate if the risk is acceptable or not.
The risk can be assessed for both a single indicator and the risk to well-being (assessed
using system reliability displayed as displayed in Figure 1). Murphy and Gardoni (2008)
defined an acceptable threshold for a capability based on the minimum level of capabili-
ties a community should allow in principle (Nussbaum 2000b). In the case of a special con-
dition like a natural hazard, a lower level of attainment could be allowed as long as it is
temporary, reversible, and does not fall below an ever lower tolerability threshold
(Murphy and Gardoni 2008). Figure 2 (adapted from Gardoni and Murphy 2018) shows
the acceptability and tolerability limits for a given indicator. This process is repeated for
each indicator and then system reliability can be used to assess the overall risk to well-
being as discussed in Section 2.

Table 1. Example capabilities and indicators.
Capability (Opportunity to…) Indicator Indicator type

Maintaining health Access to a hospital Categorical
Being sheltered Access to a permanent residence Categorical
Being mobile Travel time Real-valued
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To mathematically model the recovery of well-being over the occurrence of a disruptive
event, Tabandeh et al. (2019) integrated the probabilistic models for the indicators into a
Dynamic Bayesian Network (DBN). The statistical inference problem is to estimate the
probability that the state of well-being at any time during the recovery is either accepta-
ble, tolerable, or intolerable. The graphical structure of the DBN visualises the role of each
regressor and indicator in the overall state of well-being.

Resilience and sustainability goals can be defined to consider recovery time, environ-
mental justice, and social justice (Gardoni and Murphy 2018). In terms of capabilities, resi-
lience and sustainability goals are concerned with how quickly the capabilities return to
their pre-hazard conditions (or better) and the inequalities in the distributions of capabili-
ties across space and time (Boakye, Murphy, and Gardoni 2018).

Figure 1. System reliability approach.

Figure 2. Acceptability and tolerability limits.
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4. Big data in hazard management

Big data sources can be grouped into two large categories: free and for purchase. In
general, the data can be in many forms (numerical, text, etc.) and require algorithms for
post processing. Examples of free sources that can be used in big data analytics are gov-
ernment sponsored data (like the United States Census) and social media data (such as
Twitter or Facebook.) Althoughmany free big data sources exist, they are often incomplete
or in an aggregate form. Using incomplete data as an input into models can result in
biased outputs and should be avoided whenever possible. Aggregate data, although infor-
mative, is often at an aggregation level that is too large to be useful. For example, a com-
munity with over 6,000 people may only have 6 aggregation levels for socio-economic
data such as median income (explained further in Section 7.) For these reasons, research-
ers are often dependent on for purchase data. An example of for purchase data are call
detail records (CDRs), which require an agreement with a telephone company (Arslan
et al. 2017).

Since social media is one of the largest sources of big data, researchers have recognised
the importance of social media within disaster management. Many governments have
active Twitter pages that provide real time information for the public during a disaster
period. Cenni et al. (2017) have created a multi-user tool to analyze Twitter data for
early warning systems, sentiment analysis, and connectivity analysis. Wang and Ye
(2018) have identified four dimensions in social media data: space, time, context, and
network. Spatial information is useful to study the spatial distribution of risk. Gupta
et al. (2013) use geo-referenced tweets to visualise tweets about Hurricane Sandy on a
world map. Time information is especially salient in disaster mitigation. Since all social
media posts come with a time stamp, many studies have focused on identifying time pat-
terns of posts by governments and emergency organisations (Sakaki, Okazaki, and Matsuo
2010). Content information can be used to characterise public sentiment or response to
disaster. Qu et al. (2011) use content information from a Chinese social media platform
to see if people are asking for situational updates, expressing opinions, or asking for
help/support. Finally, network information can be used to identify behaviours of various
agents in disaster situations. Researchers use a social media analysis to detect network pat-
terns (Starbird and Palen 2010) and identify the main information sharers (Kogan, Palen,
and Anderson 2015).

Once big data sources have been identified, methods from machine learning can be
used to recognise patterns and/or combine heterogeneous data sources to enhance exist-
ing models. Machine learning is a branch of artificial intelligence that focuses on algor-
ithms for prediction and classification. These algorithms are either supervised (when the
response is known) or unsupervised (when the response is unknown.) Least squares
and nearest neighbour analyses are commonly used supervised methods while cluster
analyses are widely used for unsupervised methods (Trevor, Robert, and Friedman
2009). Both supervised and unsupervised methods have been used to inform engineering
models. For example, Asencio–Cortés et al. 2018 compared different learning algorithms
to see which one performed best for the prediction of earthquake magnitude in California
using a 1 GB catalog of ground motions.

CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS 105



5. Big data analytics within a capability approach

In the previous sections, we detailed a CA and how it can be used for risk analysis. In this
section, we discuss how big data analytics can be used in a capability approach. In general,
data analytics can be used to inform indicators or be used to define high resolution regres-
sors for indicators.

Data analytics can be used to inform indicators. Often the data that can be found from
analytics (Twitter, cell phone, etc.) do not account for the entire population. However, the
additional information can be integrated into engineering models to generate more accu-
rate predictions. For example, consider mobility. The mobility of a community is a complex
but important variable for well-being (Boakye et al. 2019). Understanding individual mobi-
lity is complicated and in the past researchers have used statistical models (e.g. random
walk and diffusion) to approximate human mobility. With growth in technology, cell
phone records have emerged as a leading tool to measure human mobility. Detailed
records can track the movements of individuals and can be used to check the accuracy
of statistical models. Gonzalez, Hidalgo, and Barabasi (2008) studied the trajectory of
100,000 anonymized mobile phone users whose position is tracked for a six-month
period. Their findings were in contrast to statistical models.

Following disasters, the mobility of people becomes even more salient and issues of
mass displacement are of interest. Martin and Singh (2018) used over 700 million publically
available media articles, in-person interviews, and Twitter data to analyze the patterns and
reasons for forced migration and mass displacement following disasters. With this vast
amount of data, they were able to create early warning and simulation tools for decision
makers. The goal of the early warning tool is to inform decision makers that mass displa-
cement or forced migration may happen soon while the simulation tool is a prediction
model that decision makers can use for mitigation purposes.

Data analytics can be used to create high resolution regressors for indicators. As noted
previously, Tabandeh et al. (2019) developed models that can couple social vulnerability
factors with high resolution, detailed engineering models. However, these models
require accurate information on the built and social environments (Boakye, Murphy, and
Gardoni 2018; Sharma, Tabandeh, and Gardoni 2018). To accurately measure the
damage to the built environment, we depend on complex engineering models which
require detailed information about the structures. For example, Gardoni, Der Kiureghian,
and Mosalam (2002), Gardoni, Mosalam, and Der Kiureghian (2003) developed physics-
based models for infrastructure damage. The inputs to these models require information
on the material and geometry of each component that can be difficult to obtain from pub-
lically available data. Further complications occur because the data needed to complete
the analysis usually comes from multiple sources. One possible solution is to combine
data mining techniques (such as convolutional neural networks) with image processing
to create real time inventories of the built environment. Of course, the addition of data
mining could add additional uncertainties or error that need to be accounted for. This
is further discussed in Section 6. In all applications, it is imperative to clearly define
which engineering models are used and to propagate the uncertainties throughout the
models.

In addition to requiring real-time inventories, accurate modelling of indicators requires
high resolution information on socio-economic regressors. Knowing age, race, gender, and
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other vulnerability factors at each household could allow for household-level predictions
of consequences such as loss of shelter or power. These household-level predictions of
consequences could help decision makers in the planning and mitigation of hazards.
Unfortunately, publically available data are historically found in aggregated forms
making it difficult to obtain household-level data. Data analytics can be used to create
high resolution prediction models socio-economic regressors using data from a multitude
of resources including but not limited to social media and CDRs. These prediction models
for socio-economic regressors can then be used as input in models for indicators which
can account for spatial variability within the socio-economic regressors.

6. Grand challenges: privacy, source validity, and accuracy

Although big data analytics presents opportunities for more realistic models, there are also
three grand challenge areas that big data presents: privacy, source validity, and accuracy.
The goal of the prediction models is to provide decision makers with information they can
use to protect and serve the public. In order to do that, we argue that methods must
protect the public’s privacy and be as accurate as possible. Although challenging, this
section discusses our recommendations in these areas.

Many argue that privacy is a right or something that should be preserved, however, the
accumulation of personal data has an incremental adverse effect on privacy. As popularity
in data sharing has increased, more personal information has been revealed (Tene and
Polonetsky 2012). Although sensitive data are traditionally aggregated to try to preserve
privacy, there is a trade-off that should be considered. As noted in Section 5, house-
hold-level socio-economic regressors are needed to account for spatial variability. As a
result, the creators of these models should try to balance privacy concerns with the
need for accurate models especially if sensitive data is used to relevant models. To accu-
rately model and prevent concerns with social justice (Gardoni and Murphy 2018), it is
important to have household-level predictions of socio-economic regressors. Moreover,
it is important to note that many machine learning techniques would produce predictions
of socio-economic information. Therefore, it is possible to create high resolution regressors
without directly dealing with or releasing privileged or private information. It is important
that this distinction is clearly communicated with the public and the users of the models so
that it is clear what is predicted.

The growth in data sharing has led to numerous data sources that contain false infor-
mation. The information provided by these sources may be especially salient for research-
ers and decision makers to include in their model formulations. If no effort is made to
examine source validity, prediction models may produce results that have large errors.
This is especially dangerous in the field of risk management when the goal is to
provide prediction models that can be used to mitigate societal consequences. Therefore,
data sources must be screened for validity before they are included in any prediction
models. Moreover, the creators of the models should be transparent and report which
data sources are being used to allow for scrutiny and/or consensus from colleagues.

As shown in Section 4, social media data has been identified as a useful source in many
studies on hazard management. However, the inclusion of social media data can create
errors since users may post invalid things or false statements threatening the accuracy
of the prediction models. Unlike traditional data sources that can come from
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governmental organisations, social media websites provide little to no screening on false
information making it difficult to capture high-quality content (Agichtein et al. 2008).
Additionally, the trend of using social media data only should cause concern. Using
social media data alone would introduce inherent bias against people who do not have
access or use social media. These groups (e.g. elderly or young children) are especially vul-
nerable to disproportionate disaster impacts so it is important to ensure that models using
social media data take this into account.

Further, the combination of sources that is used in many data mining techniques often
leads to errors related to noise or disagreement that need to be measured and accounted
for the in the final prediction model. These errors may ultimately affect the model accu-
racy. As researchers, one of our major priorities must be to ensure the accuracy of our pre-
dictive models. If the error from the data source is known explicitly we can mathematically
treat it like measurement error as done in Gardoni, Der Kiureghian, and Mosalam (2002).
Here the addition of measurement error increases the model variance (and the overall
model uncertainty.) If the additional uncertainty coming from the data source is too
large (and increases the model uncertainty too much), it may be necessary to remove
that data source to create a useful model.

7. Example

In this example, we study the effect of a hypothetical earthquake on the capability of being
sheltered. The study area is the coastal community of Seaside, Oregon with a population
that fluctuates between 6,000 and 14,000 residents. Based on counts from the 2010
Decennial Census, 6,440 inhabitants are assigned to various buildings throughout the

Figure 3. Mean damage to buildings.
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city (Guidotti, Gardoni, and Rosenheim 2019). The earthquake has magnitude Mw = 7.0
and an epicentre located 25 km southwest of the city. Ground Motion Prediction
Equations (Boore and Atkinson 2008) are used to generate maps of the ground motion
intensity measures over the relevant study region.

To estimate the structural damage to the buildings of Seaside, fragility curves (as
defined in Gardoni, Der Kiureghian, and Mosalam 2002) are used for a given earthquake
intensity measure at the site to find the conditional probability that each building is in
one of four different damage states (FEMA 2015). The mean damage is then calculated
following Bai, Hueste, and Gardoni (2009). Figure 3 shows the mean damage for each
residential building in Seaside. The definitions of insignificant, moderate, heavy and
complete used in Figure 3 follow Bai, Hueste, and Gardoni (2009).

After the earthquake occurs, people may choose to dislocate from their permanent resi-
dence due to structural damage. For the same level of damage, the likelihood of dislo-
cation is affected by other socio-economic factors (Gladwin 1997; Lin 2009). People
dislocation is estimated using a logistic model with regressors based on the expected
structural damage and race (Guidotti, Gardoni, and Rosenheim 2019). Structural damage
and people dislocation are then used to define the indicator for the capability of being
sheltered (having access to a permanent residence.) Lower values of the indicator indicate
that the residents have a higher shelter need because they may not have the ability to stay
at his/her permanent residence due to high structural damage. An even lower value of the
indicator is given to the residents who have the highest shelter need because of high
structural damage and an inability to dislocate to a temporary residence (estimated by
the dislocation model.) The locations of the lowest indicator values can be used to

Figure 4. Shelter indicator.
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optimise resources for temporary shelters. Figure 4 shows the values of the indicator for
shelter.

Since we can predict structural damage at the household level, we would like the socio-
economic regressors (i.e. race) to also be at that level of granularity. However, data related
to race are available only at the census block level. Census blocks are the smallest statisti-
cally defined geographical areas defined by the Census Bureau for tabulation in the 100-
percent data (data is collected at every household as opposed to a sample of households
in the study area.) The data available at the census block level are count data such as age
and race. The census block is smallest aggregation provided by the Census Bureau and the
size varies by population density. For data related to other socio-economic factors such as
income, the aggregation available is at the census block group level. Census block groups
are statistically defined geographical areas that contain 600–3,000 people (1500 is
optimal.) Figure 5(a and b) show the levels of aggregations for race and income respect-
ively for Seaside. These figures show that the census provides 217 and 6 different values
for race and income respectively for the city of Seaside. Given that our model for building
damage includes estimates for each household in Seaside, we would also want household-
level predictions of the socio-economic conditions to use in a model for people
dislocation.

Data analytics can assist in improving the granularity of the socio-economic regressors.
Data mining and machine learning techniques can be used to create a model that predicts
income (for example) at the household level. The inputs of this model would come from
multiple data sources and be at different granularities. To check the accuracy of the pre-
diction, one can aggregate the prediction to the census block group level and compare it
to the available median household income estimate provided by the census and/or check
it against some available household level incomes (e.g. income of public employees.) This
household-level prediction would allow us to better understand and predict the spatial
variability in the probability of dislocating due to salient socio-economic conditions.

Figure 5. Granularity of (a) race and (b) income for Seaside, Oregon.
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8. Conclusions

In this paper, a CA is used to quantify the impact of a natural disaster incorporating the
spatial variability in the intensity measures of the hazard, in the vulnerabilities of the phys-
ical systems, and the socio-economic conditions of individuals. There are models available
to accurately capture the spatial variability in the intensity measures and the physical
systems. Capturing the spatial variability in the socio-economic conditions is challenging
due to limitations in data availability. Data analytics are proposed as a tool to estimate the
social regressors at the desired granularity and capture the spatial variability in socio-econ-
omic conditions. We also discuss opportunities, challenges, and recommendations for
incorporating large data methods into disaster studies. To illustrate the described frame-
work, the effect of a hypothetical earthquake on the need for shelter is examined. This
example is for a single consequence and an earthquake of given magnitude and location.
The process could be repeated for multiple earthquakes of different magnitudes and/or
locations. To fully examine the risk of an earthquake (which can have varying degrees
of magnitude and location), there are two possible approaches. The first is to do a fully
coupled analysis where we use the probability distribution functions of both the location
and magnitude. Then, the total probability rule can be used to find the mean impact by
integrating over all of the possible values. Second, we could examine the worst case scen-
ario and use that for mitigation and policy decisions.
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